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1. Introduction

Anticipations among high energy physicists for the discovery of new physics at the Large

Hadron Collider (LHC) are very high as it prepares to operate in full swing. There are a

number of compelling rationales for anticipating new physics beyond the Standard Model

(SM). One of them is the observed baryon asymmetry of the universe, which indicates the

survival of more matter than antimater during the evolution of the universe. In the SM,

the only source of CP violation is the complex phase in the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. It has been noticed that the size of CP violation in the SM by means of

the CKM matrix alone is too small to explain the observed value of the baryon-to-entropy

ratio, nB/s ∼ 8 × 10−11 [1], if the universe had begun from a baryon-symmetric state.

Thus, in order to explain the observed baryon asymmetry of the universe, other sources of

adequate CP violation are required.

A number of alternative models beyond the SM have been investigated for the pos-

sibility of CP violations. Supersymmetry (SUSY) has been with us for several decades,

which nowadays is regarded as the most certain candidate for new physics. In reality, the

necessity of CP violation beyond the SM is not the only raison d’etre for the SUSY. There

are multiples of arguments that support its existence in nature. Some supersymmetric

models have also been studied in this context, as their sophisticated Higgs sectors may

possess sources of CP violation [2]. For some phenomenologically realistic supersymmetric

models extended from the SM, soft SUSY breaking terms are essential ingredients [3]. If

these soft SUSY breaking terms contain complex phases, the phenomenological analyses of

these supersymmetric standard models might not only be complicated but also involve CP

violation.

The minimal supersymmetric standard model (MSSM) is the simplest version of su-

persymmetric extension of the SM. Its Higgs sector has two Higgs doublets in order to give

masses to up-like quarks and down-like quarks separately. At the one-loop level, a com-

plex phase in the soft SUSY breaking terms of the MSSM induces an explicit CP mixing

between scalar and pseudoscalar Higgs bosons [4].
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Non-minimal versions of supersymmetric extension of the SM have additional Higgs

singlets and thus can dynamically solve the dimensional µ-parameter problem in the MSSM

by means of the vacuum expectation value (VEV) of the Higgs singlet [5 – 7]. They have

also been studied within the context of explicit CP violation in their Higgs sectors [8 –

11]. The next-to-minimal supersymmetric standard model (NMSSM) is a typical member

of them. Unlike the MSSM, the Higgs potential of the NMSSM has one nontrivial CP

phase after redefining the Higgs fields at the tree level [9]. At the one-loop level, it also

develops CP violating phases. The effects of explicit CP violation at the one-loop level

in the NMSSM on the masses of neutral and charged Higgs bosons are predicted in the

literature [10].

The Higgs potentials of both the minimal non-minimal supersymmetric model and the

U(1)-extended supersymmetric model may not have any CP phase at the tree level [11].

However, these models may also possess complex phases to induce explicit CP violation at

the one-loop level, by taking the radiative corrections due to the quark and squark loops

into account.

In this article, we would like to continue to study the possibility of CP violation in

the Higgs sector of a supersymmetric E6 model. This model has two U(1) symmetries in

addition to the SM gauge symmetry, thus with two additional neutral gauge bosons, and

two Higgs singlets as well as two Higgs doublets [12, 13]. The tree-level Higgs potential

of this model may not have complex phase, because any complex phase can always be

eliminated by rotating the relevant Higgs fields. At the one-loop level, it is shown that

this model may allow CP violation in an explicit way due to radiative corrections. We

study the Higgs phenomenology of this model by varying all the relevant parameters within

reasonable ranges, to obtain the upper bound on the lightest neutral Higgs boson mass. We

investigate prospects for discovering the neutral Higgs bosons of this model at the LHC, by

calculating the minimum cross section for producing at least any one of the neutral Higgs

bosons of this model via the WW fusion process at the LHC.

2. Higgs sector

Let us describe the Higgs sector of our model. We assume that the electroweak gauge sym-

metry of our model is SU(2)×U(1)×U1(1)×U2(1), where the two extra U(1) symmetries

are decomposed from E6. Thus, it is a kind of rank-6 supersymmetric model. We assume

that in general U1(1) and U2(1) would mix with a certain mixing angle θ to become two

linearly orthogonal combinations, U(1)′ and U(1)′′. The Higgs sector of our model consists

of two Higgs doublets, HT
1 = (H0

1 ,H−
1 ) and HT

2 = (H+
2 ,H0

2 ), and two neutral Higgs sin-

glets, N1 and N2. The Yukawa interaction between Higgs superfields and quark superfields

in the superpotential of our model may be expressed as [12, 13]

W ≈ htQ
TH2t

c
R − hbQ

TH1b
c
R + λH1H2N1 , (2.1)

where we take only the third generation into account and ht and hb are respectively the

dimensionless Yukawa coupling coefficients of top and bottom quarks, λ is a dimensionless

coefficient, H1 and H2 are the Higgs doublet superfields, N1 is the Higgs singlet superfield,
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tcR and bc
R are respectively the right-handed top and bottom quark superfields, and Q is the

left-handed SU(2) doublet quark superfield of the third generation. This superpotential

has the same expression as discussed in ref. [13] or ref. [14], where relatively well-known

rank-6 SUSY models are investigated.

Note that, shown as the last term in the superpotential, only N1 participates in cou-

pling to the Higgs doublets, because the underlying E6 gauge symmetry does not allow the

other Higgs singlet N2 to do so [13]. Effectively, the coupling between N1 and the Higgs

doublets corresponds to the µ term in the MSSM where the µ-parameter is generated by

the VEV of the N1.

The Higgs potential of our model at the tree level is collected from D-terms, F -terms,

and the soft terms in the superpotential. The most general form of the Higgs potential at

the tree level is given as [13]

V0 = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

3N
†
1N1 + m2

4N
†
2N2 − (λAH1H2N1 + H.c.)

+ |λ|2[H†
1H1H

†
2H2 + H†

1H1N
†
1N1 + H†

2H2N
†
1N1]

+

(

g2
2

2
− |λ|2

)

|H†
1H2|2 +

g2
1 + g2

2

8
(H†

1H1 − H†
2H2)

2

+
g
′2
1

72
[Cθ(H

†
1H1 + 4H†

2H2 − 5N †
1N1 − 5N †

2N2)

−
√

15Sθ(H
†
1H1 − N †

1N1 + N †
2N2)]

2

+
g
′′2
1

72
[Sθ(H

†
1H1 + 4H†

2H2 − 5N †
1N1 − 5N †

2N2)

+
√

15Cθ(H
†
1H1 − N †

1N1 + N †
2N2)]

2 , (2.2)

where g2, g1, g
′

1, and g
′′

1 are respectively the SU(2), U(1), U(1)′, and U(1)′′ gauge coupling

coefficients, A is a massive parameter, Cθ = cos θ and Sθ = sin θ, and mi (i = 1, 2, 3, 4) are

soft SUSY breaking masses. These four soft masses in the Higgs potential would eventually

be eliminated by means of the minimum conditions for the Higgs potential with respect to

four neutral Higgs fields.

The parameters of the Higgs potential are assumed to be generally complex. Thus,

λ and A in the tree-level Higgs potential may be complex such that their complex phases

may be factored out explicitly as λAeiφ. We also assume that the VEVs, which four

neutral components of the Higgs fields acquire after electroweak symmetry breaking, may

in general be complex. However, by redefining the phases of H1, H2, and N2, we may adjust

the vacuum expectation values as v1 = 〈H0
1 〉, v2 = 〈H0

2 〉, x1e
iφ1 = 〈N1〉 and x2 = 〈N2〉,

where v1, v2, x1, and x2 are real and the complex phase φ1 is the overall phase in 〈H1H2N1〉.
Thus, looking at the Higgs potential at the tree level, one can easily notice that the only

possible source of complex phases is λAH1H2N . By further redefining the phase of the

Higgs singlet N1, it is always possible to make the two phases φ and φ1 cancel each other

so that the tree-level Higgs potential can be made completely real. Therefore, our model

conserves the CP symmetry at the tree level.

– 3 –
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After the electroweak symmetry breaking, the tree-level mass of top quark is given

as m2
t = (htv2)

2, and the tree-level masses of stop quarks are given by the on-shell La-

grangian as

m2

t̃1, t̃2
=

1

2
(m2

Q + m2
T ) + m2

t +
1

4
m2

Z cos 2β + G
′

t ∓
√

Xt , (2.3)

where mQ and mT are the soft SUSY breaking masses for the stop quarks, m2
Z = (g2

1 +

g2
2)v2/2 with v2 = v2

1 + v2
2 is the squared mass of the neutral weak gauge boson, tan β =

v2/v1, and

Xt =

(

1

2
(m2

Q − m2
T ) +

(

2

3
m2

W − 5

12
m2

Z

)

cos 2β

)2

+ m2
t (A

2
t + λ2x2

1 cot2 β − 2λAtx1 cot β cos φt) ,

G
′

t = − g
′2
1

4

(

1

3

√

5

2
Sθ −

1√
6
Cθ

)[(√
10

3
Sθ +

√

2

3
Cθ

)

v2 cos2 β − 2

3

√
10Sθx

2
1

+

(√
10

3
Sθ −

√

2

3
Cθ

)

v2 sin2 β −
(

1

3

√

5

2
Sθ −

5√
6
Cθ

)

x2
2

]

− g
′′2
1

4

(

1

3

√

5

2
Cθ +

1√
6
Sθ

)[(√
10

3
Cθ −

√

2

3
Sθ

)

v2 cos2 β − 2

3

√
10Cθx

2
1

+

(√
10

3
Cθ +

√

2

3
Sθ

)

v2 sin2 β −
(

1

3

√

5

2
Cθ +

5√
6
Sθ

)

x2
2

]

, (2.4)

with m2
W = g2

2v
2/2 being the squared mass of the charged weak gauge boson, At being

the trilinear soft SUSY breaking parameter of the stop quarks with mass dimension, and

φt being a complex phase determined by φ1 and the complex phase of At. Note that G
′

t is

the effect of the two extra U(1) symmetries, but it does not contribute the mass splitting

between the two stop quark masses. The mixing, and hence the mass splitting, between

the stop quark masses is triggered by Xt.

Now let us consider the one-loop radiative corrections to the tree-level Higgs potential.

In supersymmetric models, the incomplete cancellation between ordinary particles and

their superpartners yield the one-loop corrections to the tree-level Higgs boson masses. In

SUSY models, the most dominant part of the one-loop corrections to the tree-level Higgs

potential come primarily from the top and stop quark loops. For large tan β as large as

50, the contribution of the bottom and sbottom quark loops can also be large. In this

paper, we consider the contributions from the top and stop quark loops at the one-loop

level. The full Higgs potential at the one-loop level may be written as V = V0 + V1, where

V1 is contribution from the radiative corrections due to the top and stop quark loops. The

effective potential method provides us [15]

V1 =
∑

l

nlM4
l

64π2

[

log
M2

l

Λ2
− 3

2

]

, (2.5)

where Λ is the renormalization scale in the modified minimal subtraction scheme, the

subscript l stands for the top and stop quarks: t, t̃1, t̃2, Mi are the top and stop masses at
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the tree level given as functions of Higgs fields, and ni are the degrees of freedom for these

particles. Including the sign convention, they are given as nt = −12 and nt̃i
= 6 (i = 1, 2),

as in the above formula enter the stop quarks with a negative sign while the top quark

with a positive sign.

Since the parameters of the Higgs potential are assumed to be generally complex, we

may have φ, which is the phase of λA. Unlike the tree-level case, we cannot redefine the

phase of N1 at the one-loop level to cancel it. Thus, φ may persist at the one-loop level.

This can be most clearly be seen in the non-trivial tadpole minimum condition with respect

to the pseudoscalar component of the Higgs field:

0 = A sin φ − 3m2
t At sin φt

16π2v2 sin2 β
f(m2

t̃1
, m2

t̃2
) , (2.6)

where the first term comes from the tree-level Higgs potential and the second term comes

from the radiative corrections, and the dimensionless function f arising from radiative

corrections is defined as

f(m2
x, m2

y) =
1

(m2
y − m2

x)

[

m2
x log

m2
x

Λ2
− m2

y log
m2

y

Λ2

]

+ 1 . (2.7)

But for the radiative corrections, the above tadpole minimum condition at the tree level

would be satisfied when φ = 0. Due to the presence of the one-loop corrections, φ = 0 is

no longer in general the solution to the above tadpole minimum condition.

Our model has twelve real degrees of freedom in the Higgs sector. They may be

classified as three neutral Goldstone bosons, a pair of charged Goldstone bosons, five neutral

Higgs bosons and a pair of charged Higgs bosons. After the electroweak symmetry breaking,

the three neutral Goldstone bosons and a pair of charged Goldstone bosons will be absorbed

into the longitudinal component of Z, Z ′, Z ′′ and W gauge bosons, where Z ′ and Z ′′ are

the extra neutral gauge bosons.

The squared mass matrix M of the five neutral Higgs bosons is given as a symmetric

5× 5 matrix, obtained by the second derivatives of the Higgs potential with respect to the

five neutral Higgs fields. At the tree level, the five neutral Higgs bosons may have definite

CP parity, since the CP symmetry is conserved in the Higgs sector. Thus, we may denote

them as Si (i = 1, 2, 3, 4) for neutral scalar Higgs bosons and P for neutral pseudoscalar

Higgs boson. In the (S1, S2, S3, S4, P ) basis, the 5 × 5 matrix M at the tree level may be

expressed as

M = M0 + M0′ , (2.8)

where M0′ comes from the D-terms due to two extra U(1) symmetries of V 0, and M0

comes from the remaining terms in V0, namely, D-terms due to the SM gauge symmetry,

the F -terms, and the soft terms of the tree-level Higgs potential. They may be expressed

– 5 –
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as

M0 =















M0
11 M0

12 M0
13 0 0

M0
12 M0

22 M0
23 0 0

M0
13 M0

23 M0
33 0 0

0 0 0 0 0

0 0 0 0 M0
55















, M0′ =















M0′

11 M0′

12 M0′

13 M0′

14 0

M0′

12 M0′

22 M0′

23 M0′

24 0

M0′

13 M0′

23 M0′

33 M0′

34 0

M0′

14 M0′

24 M0′

34 M0′

44 0

0 0 0 0 0















. (2.9)

Explicitly, the matrix elements of M0 and M0′ are respectively given as follows:

M0
11 = m2

Z cos2 β + M0
55 sin2 β cos2 α ,

M0
22 = m2

Z sin2 β + M0
55 cos2 β cos2 α ,

M0
33 = M0

55 sin2 α ,

M0
12 = (λ2v2 − m2

Z/2) sin 2β − M0
55 cos β sin β cos2 α ,

M0
13 = 2λ2vx1 cos β − M0

55 sin β cos α sin α ,

M0
23 = 2λ2vx1 sin β − M0

55 cos β cos α sin α ,

M0
55 = 2λAv

cos φ

sin 2α
, (2.10)

and

M0′

11 =
1

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )v2 cos2 β +
5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )v2 cos2 β

−
√

15

9
(g

′2
1 − g

′′2
1 )CθSθv

2 cos2 β ,

M0′

22 =
8

9
(g

′2
1 C2

θ + g
′′2
1 S2

θ )v2 sin2 β ,

M0′

33 =
25

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )x2
1 +

5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )x2
1 −

5
√

15

9
(g

′2
1 − g

′′2
1 )CθSθx

2
1 ,

M0′

44 =
25

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )x2
2 +

5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )x2
2 +

5
√

15

9
(g

′2
1 − g

′′2
1 )CθSθx

2
2 ,

M0′

12 =
1

9
(g

′2
1 C2

θ + g
′′2
1 S2

θ )v2 sin 2β −
√

15

9
(g

′2
1 − g

′′2
1 )CθSθv

2 sin 2β ,

M0′

13 = − 5

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )vx1 cos β − 5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )vx1 cos β

+

√
15

3
(g

′2
1 − g

′′2
1 )CθSθvx1 cos β ,

M0′

14 = − 5

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )vx2 cos β +
5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )vx2 cos β

+
2
√

15

3
(g

′2
1 − g

′′2
1 )CθSθvx2 cos β ,

M0′

23 = − 10

9
(g

′2
1 C2

θ + g
′′2
1 S2

θ )vx1 sin β +
2
√

15

9
(g

′2
1 − g

′′2
1 )CθSθvx1 sin β ,

M0′

24 = − 10

9
(g

′2
1 C2

θ + g
′′2
1 S2

θ )vx2 sin β − 2
√

15

9
(g

′2
1 − g

′′2
1 )CθSθvx2 sin β ,

M0′

34 =
25

18
(g

′2
1 C2

θ + g
′′2
1 S2

θ )x1x2 −
5

6
(g

′2
1 S2

θ + g
′′2
1 C2

θ )x1x2 , (2.11)
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where tan α = (v/2x1) sin 2β stands for the splitting between an extra U(1) symmetry

breaking scale and the electroweak scale.

Note that both M0 and M0′ do not mix Si with P . In other words, there is no scalar-

psuedoscalar mixing at the tree-level, hence the CP symmetry. It is straightforward to

recognize that the single element M0
55 is the squared mass at the tree level of the neutral

pseudoscalar Higgs boson. Note also that if the two extra U(1) symmetries are absent, we

would have M0′ = 0. In this case, one of the neutral scalar Higgs bosons would be massless

at the tree level, since M0 may be decomposed into a block diagram consisting of three

blocks, namely, 3 × 3 submatrix, M0
44 = 0 and M0

55.

Now, at the one-loop level, the squared mass matrix M of the five neutral Higgs bosons

is corrected as

M = M0 + M0′ + M1 , (2.12)

where M1 is the radiative corrections obtained from V 1 as

M1 =















M1
11 M1

12 M1
13 M1

14 M1
15

M1
12 M1

22 M1
23 M1

24 M1
25

M1
13 M1

23 M1
33 M1

34 M1
35

M1
14 M1

24 M1
34 M1

44 M1
45

M1
15 M1

25 M1
35 M1

45 M1
55















. (2.13)

Explicitly, the matrix elements of M1 are given as follows, after imposing tadpole minimum

conditions:

M1
11 = m2

A sin2 β cos2 α − 3 cos2 β

16π2v2

(

4m2
W

3
− 5m2

Z

6

)2

f(m2

t̃1
, m2

t̃2
)

+
3

8π2v2

(

m2
t λx1∆t̃1

sinβ
+

cos β∆t̃

2

)2 g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3cos2 β

128π2v2
(4Gav

2 + m2
Z)2 log

(m2

t̃1
m2

t̃2

Λ4

)

+
3cos β

16π2v2
(4Gav

2 + m2
Z)

(

m2
t λx1∆t̃1

sin β
+

cos β∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

,

M1
22 = m2

A cos2 β cos2 α − 3 sin2 β

16π2v2

(

4m2
W

3
− 5m2

Z

6

)2

f(m2

t̃1
, m2

t̃2
)

+
3 sin2 β

8π2v2

(

m2
t At∆t̃2

sin2 β
+

∆t̃

2

)2 g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

− 3m4
t

4π2v2 sin2 β
log

(

m2
t

Λ2

)

−3 sin2 β

16π2v2

(

4m2
t

sin2 β
− m2

Z + 4Gbv
2

)(

m2
t At∆t̃2

sin2 β
+

∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3 sin2 β

32π2v2

(

2m2
t

sin2 β
− m2

Z

2
+ 2Gbv

2

)2

log

(m2

t̃1
m2

t̃2

Λ4

)

,

– 7 –
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M1
33 = m2

A sin2 α +
3m4

t λ
2∆2

t̃1

8π2 tan2 β

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

− 3Gcm
2
t x1λ∆t̃1

4π2 tan β

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3G2

cx
2
1

8π2
log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
44 =

3G2
dx

2
2

8π2
log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
55 = m2

A +
3m4

t λ
2A2

t x
2
1 sin2 φt

8π2v2 sin4 β cos2 α

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

,

M1
12 = −m2

A cos β sin β cos2 α +
3 sin 2β

32π2v2

(

4m2
W

3
− 5m2

Z

6

)2

f(m2

t̃1
, m2

t̃2
)

−3 sin β

8π2v2

(

m2
t λx1∆t̃1

sinβ
+

cos β∆t̃

2

)(

m2
t At∆t̃2

sin2 β
+

∆t̃

2

) g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3 sin 2β

32π2v2

(

4m2
t

sin2 β
− m2

Z + 4Gbv
2

)(

m2
t λx1∆t̃1

sin 2β
+

∆t̃

4

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

−3 sin 2β

64π2v2
(4Gav

2 + m2
Z)

(

m2
t At∆t̃2

sin2 β
+

∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3 sin 2β

256π2v2
(4Gav

2 + m2
Z)

(

4m2
t

sin2 β
− m2

Z + 4Gbv
2

)

log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
13 = −m2

A sin β cos α sin α − 3m2
t λ

2x1 cos β

8π2v sin2 β
f(m2

t̃1
, m2

t̃2
)

+
3m2

t λ∆t̃1

8π2v tan β

(

m2
t λx1∆t̃1

sin β
+

cos β∆t̃

2

) g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3m2

t λ cos β∆t̃1

32π2v tan β
(4Gav

2 + m2
Z)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3Gcx1

8π2v

(

m2
t λx1∆t̃1

sin β
+

cos β∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3Gcx1 cos β

32π2v
(4Gav

2 + m2
Z) log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
14 =

3Gdx2

8π2v

(

m2
t λx1∆t̃1

sin β
+

cos β∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3Gdx2 cos β

32π2v
(4Gav

2 + m2
Z) log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
15 =

3m4
t λ

2Atx
2
1∆t̃1

sinφt

8π2v2 sin3 β cos α

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3m2

t λAt cos β∆t̃ sin φt

16π2v tan β sin α

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

−3m2
t λAt cos β sinφt

32π2v tan β sin α
(4Gav

2 + m2
Z)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

,
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M1
23 = −m2

A cos β cos α sinα

− 3m2
t λ∆t̃1

8π2v tan β

(

m2
t At∆t̃2

sin β
+

sin β∆t̃

2

) g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3m2

t λ cos β∆t̃1

16π2v

(

2m2
t

sin2 β
− m2

Z

2
+ 2Gbv

2

) log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

−3Gcx1

8π2v

(

m2
t At∆t̃2

sinβ
+

sinβ∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3Gcx1 sin β

32π2v

(

4m2
t

sin2 β
+ 4Gbv

2 − m2
Z

)

log

(

m2

t̃1
m2

t̃2

Λ4

)

,

M1
24 = −3Gdx2

8π2v

(

m2
t At∆t̃2

sin β
+

sin β∆t̃

2

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3Gdx2 sinβ

32π2v

(

4m2
t

sin2 β
+ 4Gbv

2 − m2
Z

)

log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
25 = −3m4

t λA2
t x1∆t̃2

sinφt

8π2v2 sin3 β cos α

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

−3m2
t λAt cos β∆t̃ sin φt

16π2v sinα

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3m2

t λAt cos β sinφt

32π2v sin α

(

4m2
t

sin2 β
+ 4Gbv

2 − m2
Z

)

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

,

M1
34 =

3m2
t Gdx2λ∆t̃1

8π2 tan β

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

+
3GcGdx1x2

8π2
log

(m2

t̃1
m2

t̃2

Λ4

)

,

M1
35 =

3m4
t λ

2Atx1∆t̃1
sin φt

8π2v sin2 β tan β cos α

g(m2

t̃1
, m2

t̃2
)

(m2

t̃2
− m2

t̃1
)2

+
3m2

t GcAtλv cos2 β sinφt

8π2 tan α sin α

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

,

M1
45 =

3m2
t GdAtx2λ sin φt

8π2 tan β sin α

log(m2

t̃2
/m2

t̃1
)

(m2

t̃2
− m2

t̃1
)

, (2.14)

where

m2
A = − 3λm2

t At cos φt

8π2v sin 2α sin2 β
f(m2

t̃1
, m2

t̃2
) ,

∆t̃1
= λx cot β − At cos φt ,

∆t̃2
= λx cot β cos φt − At ,

∆t̃ =

(

4m2
W

3
− 5m2

Z

6

){

(m2
Q − m2

T ) +

(

4m2
W

3
− 5m2

Z

6

)

cos 2β

}

, (2.15)
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Ga =
g
′2
1

36
(4C2θ − 1) − g

′′2
1

36
(4C2θ + 1) ,

Gb =
g
′2
1

36
(
√

15S2θ + C2θ − 4) − g
′′2
1

36
(
√

15S2θ + C2θ + 4) ,

Gc = −g
′2
1

18
(
√

15Cθ − 5Sθ)Sθ +
g
′′2
1

18
(
√

15Sθ + 5Cθ)Cθ ,

Gd =
g
′2
1

72
(10 − 3

√
15S2θ + 5C2θ) +

g
′′2
1

72
(10 + 3

√
15S2θ − 5C2θ) , (2.16)

and the dimensionless function g is defined as

g(m2
x,m2

y) =
m2

y + m2
x

m2
x − m2

y

log
m2

y

m2
x

+ 2 . (2.17)

Note first that the matrix elements M1
i5 (i = 1, 2, 3, 4) are proportional to sin φt. If

φt = 0, these elements would be zero, and the scalar-psuedoscalar mixing at the one-loop

level would not occur in the Higgs sector. Therefore, there would be no CP violation in

the Higgs sector at the one-loop level. The squared mass of the pseudoscalar Higgs boson

at the one-loop level, m2
P , would be given simply by the (5, 5)-th element of the M , taking

φt = 0. It is given by adding the radiative corrections as

m2
P = 2λAv

cos φ

sin 2α
− 3λm2

t At

8π2v sin 2α sin2 β
f(m2

t̃1
, m2

t̃2
) . (2.18)

In this case, the D-terms of extra U(1) symmetries would not contribute to the mass of

the pseudoscalar Higgs boson either at the tree level or at the one-loop level.

If, on the other hand, φt 6= 0, there would be CP violation at the one-loop level,

the CP phase in the radiative corrections generates the scalar-pseudoscalar mixing, thus

the five neutral Higgs bosons are no longer states of definite CP parity. In this case, the

mass matrix should be diagonalized to obtain mass eigenstates hi (i = 1, 2, 3, 4, 5) whose

squared masses m2
hi

(i = 1, 2, 3, 4, 5) are the eigenvalues of the mass matrix. These five

neutral Higgs bosons are usually numbered such that h1 is the lightest neutral Higgs boson

and h5 is the heaviest. Hereafter, we work in the explicit CP violation scenario, that is,

with φt 6= 0.

In our model, the squared masses of the two extra gauge bosons m2

Z
′ and m2

Z
′′ are

obtained as the eigenvalues of the mass matrix for them. The explicit expressions for m2

Z
′

and m2

Z
′′ are given as

m2

Z
′ =

1

2
(m2

Z + m2
Z1

) +
√

m2
Z1

− m2
Z)2 + 4∆1 ,

m2

Z
′′ =

1

2
(m2

Z + m2
Z2

) +
√

m2
Z2

− m2
Z)2 + 4∆2 , (2.19)

where

m2
Z1

=
1

9
g
′2
1 v2(4 − C2θ +

√
15 cos 2βS2θ) +

20

9
g
′2
1 x2

1S
2
θ +

5

36
g
′2
1 x2

2(8 + 7C2θ −
√

15S2θ) ,

m2
Z2

=
1

9
g
′′2
1 v2(4 + C2θ −

√
15 cos 2βS2θ) +

20

9
g
′′2
1 x2

1C
2
θ +

5

36
g
′′2
1 x2

2(Cθ +
√

15Sθ)
2 ,
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∆1 =
1

3
g
′

1mZv(
√

5 cos 2βSθ +
√

3Cθ) ,

∆2 =
1

3
g
′′

1 mZv(
√

5 cos 2βCθ −
√

3Sθ) . (2.20)

The two mixing angles in our model, α1 between Z and Z ′ and α2 between Z and Z ′′, are

expressed as

αi =
1

2
tan−1

(

2∆i

m2
Zi

− m2
Z

)

, (2.21)

for i = 1, 2.

3. Numerical analysis

For the sake of simplicity, we take g
′

1 = g
′′

1 =
√

5/3g1 in our numerical analysis, motivated

by the gauge coupling unification. We consider the region of the parameter space bounded

as 0 < θ < π/2, 0 < φt < π, 1 < tan β ≤ 30, and 0 < λ ≤ 0.83. We assume that the

lighter stop quark is heavier than the top quark. We also assume that all of the relevant

mass parameters, mP , mQ, mT , and At, vary within the range of 100 to 1000 GeV. Note

that we employ the mass of the pseudoscalar Higgs boson at the one-loop level in the CP

conserving scenario, mP , instead of A as an input parameter. Further, we use a combined

constraint of λx1 > 150 GeV, as the experimental data on the chargino system set the

lower bound on the effective µ parameter, µ ≡ λx1. For the values of x1 and x2, we would

set their ranges not by hand but by experimental constraints.

There are strong experimental constraints on the mass of the extra neutral gauge boson

and the mixing between Z in the SM and the extra neutral gauge boson. Thus, any model

with extra neutral gauge bosons, such as our model, should comply with these constraints,

whose exact values may dependent on the specific structures of the models. We would like

to take in this article that the mixing angles, α1 and α2, should be smaller than 3×10−3 and

the masses of the two extra gauge bosons, m2

Z
′ and m2

Z
′′ , should be larger than 800 GeV.

The experimental constraints on the Higgs sector should also be taken into account

in the numerical analysis. The latest experimental analyses tell that the SM Higgs boson

lighter than 114.5 GeV is excluded at the 95 % confidence level. This lower bound on

the SM Higgs boson mass may be applied to our model by considering the relevant Higgs

couplings. Recently, the LEP collaborations reported the model-independent upper bound

on (gZZH/gSM
ZZH)2 at the 95 % confidence level [16].

First, we determine the values of x1 and x2, varying the values of other relevant

parameters within their allowed ranges. While the values of the above parameters are

chosen by the random number generation method within their respective ranges, the values

of x1 and x2 are determined in terms of the other parameters by imposing experimental

constraints. The result is shown in figure 1(a), where a distribution of 7125 points is

displayed in the (x1,x2)-plane. These points are selected among 105 random points as

they satisfy all of the above experimental constraints. Each point represents a set of

parameter values, of which the values of x1 and x2 are explicit while others are implicit. It
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Figure 1: (a) A distribution of 7125 points in the (x1, x2) plane. Each point represents a set

of parameter values that satisfies the experimental constraints on the extra neutral gauge boson

masses, on their mixings with the SM neutral gauge bosson, and on the SM Higgs boson mass.

The values of x1 and x2 are explicitly shown, and the other parameters have certain values within

their ranges respectively by the random number generation method: 1 < tan β ≤ 30, 0 < λ ≤ 0.83,

0 < θ < π/2, 0 < φt < π, 100 ≤ mA, mQ, mT , At ≤ 1000GeV. (b) The plot of mh1
against

(x1 + x2). For each of the 7125 points in figure 1(a), the mass of the lightest neutral Higgs boson

is calculated in terms of the parameter values represented by the point. (c) The distribution of

7125 points in the (mh3
, mh2

)-plane. They are distributed between 100 < mh2
< 997GeV and

116 < mh3
< 998GeV, and they satisfy mh3

> mh2
. These points are obtained with the same

parameter values as in figures 1(a) or (b). (d) The distribution of 7125 points in the (mh5
, mh4

)-

plane. They are distributed between 262 < mh4
< 1189GeV and 987 < mh5

< 1536GeV, and they

satisfy mh5
> mh4

. These points are obtained with the same parameter values as in figures 1(a)

or (b).
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is notable that these selected points are distributed in the area of the (x1,x2)-plane where

x1 + x2 ≥ 2100 GeV. Some points are scattered at x1 ∼ 400 GeV.

Then, we calculate for each point in figure 1(a) the mass of the lightest neutral Higgs

boson in our model. In this way, it is clear that the results are consistent with the relevant

parameter ranges as well as the experimental constraints. The result is shown in figure

1(b). It is quite remarkable that the majority of the points are scattered within the range of

117 ≤ mh1
≤ 140 GeV, while a few of them are distributed where mh1

is as low as 30 GeV.

The result of figure 1(b) suggests that the mass of the lightest neutral Higgs boson in our

model is most probably about 130 GeV at the one-loop level.

One may notice some pattern in figure 1(b). We find that this pattern comes from

the experimental constraints on the extra gauge bosons rather than that the experimental

bound on the SM Higgs boson mass. The lower bound on x1 + x2 is found to arise from

the experimental constraints on the masses of the extra neutral gauge bosons. Meanwhile,

most of points with mh1
< 115 GeV are excluded by the experimental constraints on the

SM Higgs boson mass. We also calculate the masses of other neutral Higgs bosons. The

results are shown in figures 1(c) and (d), where we display the correlation between mh3

and mh2
in figure 1(c) and the correlation between mh5

and mh4
in figure 1(d). The

points in these figures are obtained with the same parameter values as in figures 1(a) or

(b). Note the clear hierarchy between the masses of the neutral Higgs bosons such that

mh3
> mh2

in figure 1(c) and mh5
> mh4

in figure 1(d). The ranges for the masses of

heavier neutral Higgs bosons in our model, estimated using the aforementioned parameter

values, are: 100 < mh2
< 997 GeV, 116 < mh3

< 998 GeV, 262 < mh4
< 1189 GeV, and

987 < mh5
< 1536 GeV, where the upper bounds come from theoretical arguments and the

lower bounds come from phenomenological constraints.

Now, we examine the possibility of discovering one of the neutral Higgs bosons in our

model in the pp collisions at the LHC, where the most dominant process for the Higgs

production is the gluon fusion process, with thick QCD backgrounds. The WW fusion

process is considered as the next dominant process for the Higgs production, which is

relatively cleaner than the gluon fusion process. We would like to focus on the WW

fusion process.

We find that the PYTHIA program is useful for calculating the Higgs production mech-

anism than for other processes, although it has not yet been applied to the CP violation

scenario in the MSSM Higgs sector. However, the production cross section of the neutral

Higgs bosons in our model with explicit CP violation via the WW fusion process in pp

collisions is obtained by using the PYTHIA 6.4 program after appropriately modifying the

relevant Higgs coupling coefficients [17]. More precisely, we normalize GWWHi
, the WWhi

coupling coefficient of the Higgs coupling to a pair of W bosons, by the corresponding SM

Higgs coupling coefficient. We have

GWWhi
= (cos βO1i + sin βO2i) , (3.1)

where Oij (i, j = 1, 2, 3, 4, 5) are the elements of the orthogonal matrix that diagonalizes

the mass matrix for the five neutral Higgs bosons.
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Technically, we set the number of events to generate for each point as NEV = 2000.

The Higgs coupling coefficient is set by MSTP(4)=1, and the normalized Higgs coupling

to a W boson pair is set by PARU(165) = GWWh1
. The factorization scale and the

renormalization scale are taken to be the neutral Higgs boson mass, that is, PARP(193)

= PMAS(25,1) and PARP(194)= PMAS(25,1). The PDF library of the CTEQ5L is used

in our program, MSTP(51)=7, which is the default parton distribution function set for

the proton in PYTHIA 6.4. We use MSTP(33)=0 to include the K factor in hard cross

sections for parton interactions in PYTHIA 6.4 by default. The WW fusion process for

the lightest neutral Higgs boson is set by MSUB(124) = 1.

In this way, we obtain all of σWWhi
(i = 1, 2, 3, 4, 5), the production cross sections

of hi in our model with explicit CP violation via the WW fusion process in pp collisions.

They are given as functions of the participating neutral Higgs boson masses. Among the

five production cross sections, we select the largest one, as we are interested in discovering

any one of the five neutral Higgs bosons. Thus, we introduce

σWWh = MAX(σWWh1
, σWWh2

, σWWh3
, σWWh4

, σWWh5
) . (3.2)

We show our result in figure 2, where we plot σWWh against mh1
. The parameter

values for each point are the same as in figure 1(a) or figure 1(b). We find that the smallest

value for σWWh is about 1 pb. This implies that at least one of the five neutral Higgs bosons

in our model may be produced with its cross section larger than 1 pb. The accumulated

integrated luminosity of 30−1 fb at the LHC would yield 6000 raw Higgs events, if we

allow 20 % for the efficiency and acceptance. Therefore, we expect with relatively strong

confidence that at least one of the five neutral Higgs bosons in our model might be produced

via the WW fusion process at the LHC, if they exist.

Here, the roles that the exotic quarks take part in are worth mentioning with respect

to the Higgs phenomenology of our model. The exotic quarks may inhabit the fundamen-

tal 27 representation of E6, which is the underlying gauge symmetry of our model. In

the fundamental 27 representation, 15 components are occupied by the SM matter fields,

4 components by the two Higgs doublets, 2 components by the Higgs singlet, and the

remaining 6 components are occupied by the exotic quarks [12 – 14, 18 – 20].

The form of the superpotential tells us that the exotic quarks may couple to various

Higgs fields. They couple directly to the neutral component of the Higgs singlet N1 and

indirectly, through the mixing among the neutral Higgs bosons via the diagonalization

matrix, to other neutral Higgs fields. If the masses of the exotic quarks are comparable

to the electroweak symmetry breaking or SUSY breaking scales, the low energy SUSY

phenomenology might be affected by their presence. The effects of the exotic quarks might

appear in the gluon fusion processes for Higgs productions, as well as in the Higgs decay

processes. In particular, for example, the Higgs decays into a pair of gluons or photons

might receive the effects of the exotic quarks, when the mass of the Higgs boson is below

the range where the decay channel into a pair of gauge bosons are not yet open.

However, it is somewhat difficult to predict the amount of the exotic quark effects

because it depends on the relevant parameters in a complicated way. The coupling strength

of the exotic quarks to the neutral Higgs bosons are weak in general but might be strong,
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Figure 2: The plot of σWWh against mh1
. The production cross sections of the five neutral Higgs

bosons via WW fusion process in pp collisions are calculated in terms of the parameter values

represented by the point, and the largest of them is chosen, for each of the 7125 points in figure

1(a).

depending on what is the explicit structure of the orthogonal matrix that diagonalizes

the mass matrix for the neutral Higgs bosons. Therefore, it would be valuable to study

elsewhere a comprehensive research on the effects of the exotic quarks in our model.

4. Conclusions

We study a supersymmetric E6 model with two extra U(1) symmetries besides the SM

gauge symmetry, and two neutral Higgs singlets besides two MSSM Higgs doublets. We

find that the Higgs sector of our model may generally accommodate a non-trivial complex

phase which can cause the scalar-pseudoscalar mixing among the five neutral Higgs bosons,

by virtue of radiative corrections due to the top and stop quark loops. Thus, explicit CP

violation at the one-loop level is viable in our model.

Numerical analysis shows that there are parameter regions in our model which comply

with a number of experimental constraints such as the lower bound on the extra neutral
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gauge boson masses and the upper bound on the mixing between the extra neutral gauge

bosons and the SM neutral gauge boson. Within the allowed parameter regions, we study

the behavior of the vacuum expectation values of the two Higgs singlets, x1 and x2. We

find that they cannot be simultaneously small. The experimental constraints on the extra

neutral gauge bosons restrict that x1 + x2 should be larger than 2100 GeV whereas either

one of them may be as small as 400 GeV.

The possibility of discovering one of the five neutral Higgs bosons in our model is

examined by calculating the production cross sections using the PYTHIA 6.4 program,

where the relevant Higgs couplings are modified suitably. We focus the WW fusion process

at the LHC for their productions. We find that at least one of five neutral Higgs bosons

can be produced enough via the WW fusion process at the LHC. Thus, we speculate that

the present SUSY E6 model can be tested by the Higgs searches at the LHC.
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